Chapter 19 Two-Factor Analysis of Variance

I. Sources of variability

- A. Variance between treatment variables exists because treatments are not alike.
- B. Variance within a treatment is unexplained and due to sampling error.
- C. Additional sources of variability (called factors or treatments) may be added to a study.
 - 1. Their variability may be used to reduce unaccounted for, within treatment variability (error).
 - 2. Additional treatments are called blocking variables.
 - 3. They represent a substantial source of inherent response variability.
 - 4. Treatments must not be independent. Treatment B may affect the factors of treatment A differently. For example, weeks of experience may have a different affect on each of the recently hired sales people.
 - 5. Examples of blocking variables include age, gender, education, and time.

II. Two-factor variance analysis

- A. In chapter 18, Linda found that her 3 salespeople had different mean weekly sales and that half of the data's variability could be attributed to the salespeople treatment.
- B. Chapter 18 sales data was randomly assigned to each salesperson. Here, it has been arranged by weeks of experience. Using experience as a blocking variable may account for some of the unexplained variability. Treatments are not independent because weeks of experience may affect salespeople differently.
- C. $\sum x_B$ is the sales associated with each block (week). Number of treatments is now t, b is the number of blocks.

Weekly Sales (x) in Thousands of Dollars								Row Totals Required		
Block(B _x)	Salesperson L is T ₁		Salesperson M is T ₂		Salesperson N is T ₃		for Calculations			
Weeks	Sales(X ₁)	X_1^2	Sales(X ₂)	X_2^2	Sales(X ₃)	X_3^2	$\sum X_B$	$(\Sigma x_B)^2$	$\frac{(\sum X_B)^2}{t}$	
1	4	16	6	36	7	49	17	289	96.3	
2	6	36	6	36	8	64	20	400	133.3	
3	7	49	6	36	9	81	22	484	161.3	
4	Z	<u>49</u>	8	<u>64</u>	<u>10</u>	100	<u>25</u>	625	208.3	
		M ()					$84 = \sum X$	$\sum \left[\frac{(\sum X_B)^2}{t}\right]$	= 599.3	
$\sum X_T$	24		26		34		$84 = \sum x$			
$(\sum X_T)^2$	576		676		1156					
b	4		4		4		N = 12			
$\frac{b}{(\sum X_T)^2}$ $\sum X_T^2$	144		169		289		$\sum \left[\frac{(\sum X_7)^2}{b} \right] = \sum X^2 = 616$	= 602		
$\sum x_T^2$		150		172		294	$\sum X^2 = 616$			

	Varia	nce Analysis	Summary Table		
Variance Sources	df	Sum of the Squares	Mean Squares	ANOVA	
Between Treatments	t - 1	SS _T	$MS_T = \frac{SS_T}{t-1}$	$F = \frac{MS_T}{MS_F}$	
Block	b - 1	SS _B	$MS_B = \frac{SS_B}{b-1}$	$I - \overline{MS_E}$	
Within Treatments (error)	(t - 1)(b - 1)	SS _E	$MS_E = \frac{SS_E}{(t-1)(b-1)}$	$F = \frac{MSB}{MS_E}$	
Total Variance	N - 1	SS _{TOTAL}			

Note: This analysis is called "mean square" because it is based upon the variance.